

March 26, 2004

Prepared for
Defense Information Systems Agency (DISA)

by
Booz Allen Hamilton

Net-Centric Enterprise Services (NCES)

Service Discovery Core Enterprise Services (CES)
Architecture

Version 0.4 (Pilot)

This page was intentionally left blank.

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc i March 26, 2004

Document Change Record

Version Number Date Description

0.4 March 26, 2004 First Public Release

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc ii March 26, 2004

This page was intentionally left blank.

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc iii March 26, 2004

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 1
2. NOTATIONS AND TERMINOLOGY ... 3

2.1. NOTATIONS... 3
2.2. TERMINOLOGY.. 3

3. BACKGROUND.. 7
3.1. SERVICE ORIENTED ARCHITECTURES ... 7
3.2. NET-CENTRIC ENTERPRISE SERVICES... 9
3.3. OVERVIEW OF SERVICE DISCOVERY STANDARDS... 10

3.3.1 UDDI Registries.. 10
3.3.2 ebXML Registries ... 13
3.3.3 Enabling Technologies.. 15

4. ARCHITECTURE OVERVIEW ... 17
4.1. THE NEED FOR ENTERPRISE SERVICE DISCOVERY.. 17
4.2. SUMMARY OF ARCHITECTURAL REQUIREMENTS.. 18

4.2.1 Service Publishing... 18
4.2.2 Service Inquiry .. 18
4.2.3 Service Metadata Management ... 19
4.2.4 Security Integration... 20
4.2.5 Ubiquitous Service Discovery... 21

4.3. SCOPE, ASSUMPTIONS, AND LIMITATIONS.. 21
4.4. CONCEPTUAL SERVICE DISCOVERY ARCHITECTURE .. 22
4.5. WHY DISCOVERY SERVICES? ... 25

4.5.1 The Interoperability Perspective ... 25
4.5.2 The Usability Perspective.. 25
4.5.3 The Information Integrity Perspective .. 26
4.5.4 The Security Perspective... 27
4.5.5 The System Architecture Perspective.. 27

5. SERVICE DISCOVERY USAGE SCENARIOS.. 29
5.1. STATIC SERVICE DISCOVERY.. 29
5.2. DYNAMIC SERVICE DISCOVERY.. 31

6. SERVICE DISCOVERY INFORMATION MODEL.. 33
6.1. BASIC INFORMATION MODEL ... 33
6.2. MODELING DISCOVERY ENTITIES IN UDDI .. 34

6.2.1 Identifiers and Names ... 34
6.2.2 Service Providers .. 34
6.2.3 Services ... 35
6.2.4 Service Instances... 35

6.3. MAPPING WSDL DESCRIPTIONS TO UDDI... 36
7. INTEGRATION WITH SECURITY SERVICES.. 37

7.1. SECURING THE SERVICE INTERFACES ... 37
7.2. PROTECTING DISCOVERY ENTITIES .. 37
7.3. DISCOVERY OF SERVICE QOP REQUIREMENTS ... 38

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc iv March 26, 2004

8. FUTURE WORK... 39
APPENDIX A PREDEFINED TAXONOMIES... 41

A.1 BUSINESS / FUNCTIONAL TAXONOMIES.. 41
A.2 TECHNICAL TAXONOMIES... 41

A.2.1 General .. 41
A.2.2 Security ... 42

A.3 DEFINING NEW TAXONOMIES... 42
APPENDIX B MESSAGE EXAMPLES... 43

B.1 SIMPLE INQUIRY EXAMPLES – UDDI API VS. INQUIRY SERVICE... 43
B.2 SIMPLE INQUIRY EXAMPLES – UDDI API VS. INQUIRY SERVICE... 43
B.3 SERVICE PUBLISHING.. 44

APPENDIX C REFERENCES .. 47

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc v March 26, 2004

LIST OF TABLES

Table 1: Currently Supported Standards and Their Versions .. 16
Table 2: Summary of WSDL to UDDI Mapping... 36

LIST OF FIGURES

Figure 1: Service Oriented Architecture... 7
Figure 2: Discovery Technology Stack.. 10
Figure 3: UDDI Information Model .. 12
Figure 4: ebXML Technical Architecture .. 15
Figure 5: Conceptual Enterprise Service Discovery Architecture.. 23
Figure 6: Sample Portlet Screen .. 24
Figure 7: Typical Service Discovery Cycle ... 29
Figure 8: Static Service Discovery Scenario ... 30
Figure 9: Dynamic Service Discovery Scenario.. 31
Figure 10: Basic Information Model ... 33
Figure 11: Secure Service Inquiry ... 37

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc vi March 26, 2004

This page was intentionally left blank.

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 1 March 26, 2004

1. EXECUTIVE SUMMARY 1

The emergence of Web Service technologies has triggered a major paradigm shift in distributed 2
computing: from Distributed Object Architectures (DOAs) to Service Oriented Architectures 3
(SOAs). Within the Department of Defense (DoD) Enterprise there has been a growing need for 4
increased integration and collaboration among “Communities of Interest” (COIs), often across 5
organizational boundaries. The DoD transformation towards Net-Centricity highlights the need 6
even further. A common set of Core Enterprise Services (CESs) represent crucial infrastructure 7
components that support this vision. SOAs are well positioned to become the key technology 8
enabler for Net-Centricity due to their decentralized, loosely coupled, and highly interoperable 9
architecture. To fully take advantage of such SOA benefits, information consumers must have 10
an effective means of discovering the available services (and resources in general), learning 11
about not only their technical definitions, but also their metadata such as capabilities, 12
vocabularies, and policies. Similarly, the service and data providers also need to publish or 13
“advertise” their interfaces and metadata. These publishing and discovery mechanisms must be 14
ubiquitous and dynamic to support the ever-changing mission and business requirements. This 15
document presents a high level architecture to address such needs. The architecture covers two 16
aspects: (1) A reference information model that represents services and service metadata and 17
“profiles” the standard discovery data models (such as those defined in UDDI) for DoD and 18
NCES use; (2) A set of Service Discovery CES that complement industry standards such as 19
UDDI by providing a secure, light-weight, and user-friendly abstraction layer. 20

Just like the Web Service technologies it leverages, the service discovery architecture presented 21
in this document is still in its infancy. Some potential future work items are listed at the end of 22
the document, and it is expected that the scope of this document will grow over time. 23

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 2 March 26, 2004

This page was intentionally left blank. 24

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 3 March 26, 2004

2. NOTATIONS AND TERMINOLOGY 25

2.1. Notations 26

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 27
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 28
document are to be interpreted as described in IETF RFC 2119 [RFC 2119]. E.g.: 29

... they MUST only be used where it is actually required for30
interoperation or to limit behavior which has potential for causing31
harm (e.g., limiting retransmissions) ...32

These keywords are thus capitalized when used to unambiguously specify requirements over 33
protocol and application features and behavior that affect the interoperability and security of 34
implementations. When these words are not capitalized, they are meant in their natural-language 35
sense. 36

Fixed width texts used for file names, constants, <XML elements>, and code37
examples.38

Example code listings appear like this. 39

Italics texts are used for variables and other type of entities that can change. Italics are 40
sometimes also used for emphasized text or annotations. 41

Terms in italic bold face are intended to have the meaning defined in the glossary. 42

Underlined texts are used for URLs. 43

2.2. Terminology 44

The following terms are frequently used in this document and are briefly explained below using 45
commonly accepted definitions in the security literature. APPENDIX C contains a number of 46
security related glossaries that are much more comprehensive [RFC2828] [WS-GLOS]. 47

Identity: A set of attributes that uniquely identifies a system entity such as a person, an 48
organization, a service, or a device. 49

Comment: Note that identities are not just for human users. Resources such as data 50
providers and service providers may also have their own identities. Also note that an 51
entity may have multiple identities (e.g. local, legal, organizational). 52

Identifier: A sufficiently unambiguous reference to an identity of a system entity. 53

Comment: Note the difference between an identity and an identifier. 54

Principal: As defined in the NCES Security Architecture [SECARCH], a Principal is a system 55
entity that has a network identity, that is capable of making decisions, and to which authenticated 56
actions are done on its behalf. A principal may refer to human entities such as an individual 57

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 4 March 26, 2004

user, an organization, or a legal entity; depending on the context it may also refer to non-human 58
system entities such as a Web Service provider. 59

Comment: This document makes a distinction between Principals and Identities. A 60
principal may have multiple local identities in different security domains. For example, a 61
user principal can have a work account called “JDoe” in his employer’s network, and 62
also a personal account called “John_Doe” issued by his Internet Service Provider 63
(ISP). 64

Service Provider: A system entity that provides a collection of services. A service provider 65
usually represents a business or some other organization. A service provider may host one or 66
more Web Services, and may consist of one or many physical machines. If necessary, a service 67
provider may be assigned its own network identity and thus be considered a principal. 68

Service Consumer: A system entity that issues service requests and consumes returned 69
information. Within a SOA, a service consumer is usually an application. 70

Comment: A service provider may be a consumer of other service providers. 71

Service: It is important to note that the term “service” in this document has a broader 72
connotation than Web Services (with capital letters). We define the latter as services using 73
industry-accepted Web Service technology standards such as SOAP, WSDL, and UDDI, as 74
opposed to general services offered over the Web. Plain services, however, are interpreted in the 75
generic sense and may also represent non-SOAP based resources such as messaging applications, 76
web portals, sensor platforms, or even physical services such as a helpdesk. 77

Comment: When a service is indeed a Web Service, it is represented by a set of logical 78
interfaces defined using WSDL. Technically, it corresponds to the <wsdl:Service> 79
element in a WSDL document. 80

Service Instance: A concrete realization of a service. For Web Services, an instance is 81
sometimes also called an “end point”, which denotes a runtime instantiation of a logical Web 82
Service, accessible via a particular technical protocol and transport. 83

Comment: A service instance is represented in WSDL as a <wsdl:Port> element 84
which references protocol and transport specific service bindings. 85

Discovery Entity: Discovery Entities are data structures that are published for discovery 86
purposes. Discovery entities are expressed in XML and are persistently stored in registries 87
(defined below). They include data structures that represent service providers, services, service 88
instances, and any discovery related service metadata. 89

Comment: Discovery Entities, or sometimes referred to as “Entities” in short, are 90
information entities; they are not to be confused with System Entities which refer to 91
persons, applications, and devices. 92

Registry: A registry is a logical collection of software components (e.g. Web Services) that 93
manages a well-defined set of Discovery Entities. 94

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 5 March 26, 2004

Comment: A registry is a logical concept; it may physically reside on multiple replicated 95
“nodes” in different systems. From the user’s perspective, a registry contains a complete 96
logical copy of the entities, regardless of where those entities are hosted. 97

Publish: The act of placing one or more entities in a registry by invoking one of the registry’s 98
publishing APIs. 99

Comment: This document uses the term Publishing and Registration interchangeably, 100
although the former is preferred. 101

Custody: Each discovery entity in a registry is said to be in the custody of the registry. 102

Publisher vs. Owner: A Publisher is the principal who publishes discovery entities in a registry. 103
An Owner is the principal who has the authority to change a published entity. The publisher is 104
usually the initial owner of the entity, but the ownership may be transferred to another principal. 105

Comment: In other words, the registry does not own the published entities; it is only the 106
custodian. 107

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 6 March 26, 2004

This page was intentionally left blank. 108

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 7 March 26, 2004

3. BACKGROUND 109

3.1. Service Oriented Architectures 110

The emergence of Web Service1 (WS) technologies has triggered a major paradigm shift in 111
distributed computing. Architectures are quickly moving from DOAs using technologies such as 112
CORBA, DCOM, DCE, and Java RMI, to SOAs using technologies such as SOAP, HTTP and 113
XML. Under a SOA, a set of network-accessible operations and associated resources are 114
abstracted as a “service”. The service is described in a standard fashion, published to a service 115
registry, discovered by a service consumer, and invoked by a service consumer. Figure 1 116
illustrates the three steps of Publish, Discover and Invoke. 117

Figure 1: Service Oriented Architecture 118

Three basic standards serve as the foundation of the Web Services protocol “stack”: 119

� Simple Object Access Protocol (SOAP) [SOAP] performs the low-level XML 120
communications necessary for transmitting Web Service calls across the network. SOAP 121
provides a means of XML-based messaging between a service provider and a service 122
consumer. 123

1 This architecture document refers to Web Services (with capital letters) as services using industry-accepted Web
Service technology standards such as SOAP, WSDL, and UDDI, as opposed to general services offered over the
Web.

Service Producer
Data and applications available for
use, accessible via services.
Metadata added to services based
on producer’s format.

Service Consumer
Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Invoke

DiscoverPublish

• Describes content using metadata
• Posts metadata in catalogs for discovery
• Exposes data and applications as services

• Searches metadata catalogs to find data services
• Analyzes metadata search results found
• Pulls selected data based on metadata understanding

Security
Services

Monitoring
Services

Service
Registries

Data
Services

Service Enabled Infrastructure

Messaging
Services

Transformation
Services

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 8 March 26, 2004

� Web Service Definition Language (WSDL) [WSDL] is an XML-based language that 124
defines the functional interfaces for a Web Service. In other words, a WSDL document 125
represents the official “contract” between service providers and their consumers. These 126
WSDL interfaces are described first in abstract message structures, and then bound to a 127
concrete transport protocol and a communication “endpoint”. 128

� Universal Discovery, Description, and Integration (UDDI) [UDDI-3] is an emerging 129
standard for organizing and accessing a service registry (see Figure 1). A service registry 130
serves as the yellow pages of a collection of Web Services, providing mechanisms for a 131
service provider to publish its capabilities and for a service user to discover matching 132
services. 133

A SOA offers several distinct advantages over traditional distributed computing technologies: 134

� Maximum Interoperability – The W3C and OASIS, among others, are currently 135
defining Web Service standards that are entirely based on XML. This ensures that the 136
standards are programming language-, platform-, and programming model-neutral. For 137
example, a .NET Web Service client written in the procedural model of Visual Basic can 138
readily invoke an Object-Oriented Web Service hosted by a Java 2 Enterprise Edition 139
(J2EE) server on a Linux machine. 140

� Loose Coupling – Web Service standards define the functional interfaces that represent 141
the minimal understanding between service consumer and service provider. Knowledge 142
of the service provider is discovered dynamically from a service registry rather than 143
statically coded in the client program. 144

� Ubiquity – Web Service calls are essentially XML messages sent over well-understood 145
Internet protocols such as HTTP. These protocols represent the “least common 146
denominator” of network protocol stacks and makes it easier to overcome firewall and 147
infrastructure constraints. Web Services are likely to be the most viable option for inter-148
agency information sharing among different autonomous networks. 149

The migration toward more agile SOAs is not merely a technology push; there are also a number 150
of key business drivers at work. In e-Business and e-Government alike, there is a growing need 151
for increased integration and collaboration across organizational boundaries. Here are some 152
domain scenarios: 153

� E-Business / E-Gov Integration – As businesses strive to keep costs down and become 154
more agile in meeting customer demands, it is necessary to have a technology 155
infrastructure that can enable “deep” integration in the supply chain. Within this scenario, 156
complex systems such as Customer Relationship Management (CRM) and financial 157
systems from manufacturers, suppliers, and distributors can retrieve information and 158
conduct business transactions with one another. For example, a business in the market for 159
a product could shop instantly around the globe for suppliers that meet purchase 160
requirements and dynamically negotiate deals. 161

� Counter Terrorism – There is a pressing need in the intelligence community to provide 162
a highly scalable system that supports collaboration, analytical reasoning and information 163
sharing among multiple Department of Defense, intelligence and federal agencies. 164
Furthermore, obtaining accurate and timely counter-terrorism intelligence requires 165

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 9 March 26, 2004

processing unprecedented amounts of data, possibly in petabytes, from both classified, 166
unclassified, structured and unstructured sources. There is no single system that can 167
achieve this task and therefore must involve many distributed, decentralized systems. 168

� Tactical Warfighting – Similarly, in the defense sector, there is an increasing need for a 169
C4I (Command, Control, Communications, Computers and Intelligence) system that 170
provides a single, integrated ground picture of forces deployed to the theater. Warfighters 171
need access to real-time information and must operate within the communications 172
infrastructure of existing global networks. Intelligent agents, for example, may 173
automatically discovery and correlate data streams relevant to a current tactical position. 174
DoD’s recent Net-Centric Enterprise Services (NCES) initiative reflects this vision. 175

It is impossible to adopt one single platform, programming language, or protocol that fulfills the 176
needs of these scenarios. A successful architecture must accommodate heterogeneity, and 177
support interoperability in three dimensions: horizontal (across peer systems), vertical (among 178
different organizational levels) and temporal (along a system’s evolutionary path). The unique 179
capabilities that come with distributed Service Oriented Architectures can successfully balance 180
these competing dimensions. 181

3.2. Net-Centric Enterprise Services 182

Net-Centricity is an architectural mindset that values the relevance, timeliness and accessibility 183
of information above all other qualities. A Net-Centric solution makes data immediately 184
available to those that need it, prohibits unauthorized access to protected resources, and allows 185
consumers to discover relevant information assets without pre-existing knowledge of their 186
existence. The Defense Information Systems Agency (DISA) is currently working to field a set 187
of capabilities that help provide ubiquitous access to reliable, decision-quality information 188
through a net-based Web-Services infrastructure. 189

There are currently nine Net-Centric Enterprise Services (NCES) defined, and each provides a 190
distinct set of capabilities to the network. Infrastructure services such as Security, Storage, and 191
Enterprise Services Management provide foundational capabilities to other services, while end-192
user services such as Collaboration facilitate direct communication between people in disparate 193
locations. 194

With few exceptions, the services defined under NCES are platform- and implementation-195
agnostic specifications that abstract underlying solutions. The dichotomy formed by splitting the 196
implementation from the specification allows COTS and GOTS implementations to appear and 197
behave the same. That is, given a sufficiently robust specification it’s possible to build adaptors 198
to current and future technologies without impacting current integrations. From the system 199
perspective, changes in implementation matter little because they are largely invisible. This 200
model allows for Evolution without convolution. 201

Moving toward a specification-driven architecture allows for the commoditization of services 202
defined under NCES. Achieving commoditization allows implementations to be tailored to local 203
environments, allows deployments to be more or less robust based on expected load, and ensures 204
that vendors compete on price, reliability and speed, not features. Net-Centricity within NCES 205
values capabilities over implementations, and provides mechanisms that allow each member of 206

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 10 March 26, 2004

the user community to become a catalyst of change. At the same time, Net-Centric services are 207
reliable, fault-tolerant, secure, and provide unique capabilities that enhance both the structure 208
and substance of the network. 209

3.3. Overview of Service Discovery Standards 210

This section provides a brief survey of existing service discovery standards that are applicable in 211
a service-oriented environment. The service discovery architecture described in this document 212
will focus on UDDI for the moment, but its long term goal is to support different discovery 213
specifications and information models in a seamless fashion. The discovery architecture is based 214
on layers of discovery specifications and enabling technologies, as shown in Figure 2 below. 215

Figure 2: Discovery Technology Stack 216

3.3.1 UDDI Registries 217

3.3.1.1 History and Background 218

The UDDI project began in October 2000 as a collaboration between Microsoft, Ariba, and IBM. 219
Its main goal was to speed interoperability and adoption for Web services through the creation of 220
standards-based specifications for service description and discovery, and the shared operation of 221
a business registry on the Web. Before the UDDI project, there was no industry-wide, accepted 222
approach for businesses to reach their customers and partners with information about their 223

Service
Introspection

Service
Discovery

Supporting
Wire Formats

Standard
Networking

Layers

Network
Discovery

Approaches

Service Oriented
Application

Layer

ARP, RARPARP, RARP

DNSDNS
TCP / IPTCP / IP

Content Distribution SystemsContent Distribution Systems

Web Service ApplicationsWeb Service Applications

XMLXML XML DSIGXML DSIG XACMLXACML

SOAPSOAP
UDDIUDDI

Standard Data
Representation

Standard
Application
Messaging
Framework

Information Model Discovery Services Registries Metadata Mgmt NCES Discovery
Architecture

(—— — Being developed / ratified)

ebXMLebXML

WSDLWSDL WS-Policy SuiteWS-Policy Suite

WSILWSIL

WSPLWSPL

RDFRDF …

WS-DiscoveryWS-Discovery

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 11 March 26, 2004

products and Web services. UDDI enables enterprises to quickly and dynamically discover and 224
invoke Web services, both internally (to the enterprise) and externally. 225

The initial idea behind UDDI was that software companies, standards bodies, and programmers 226
would populate the public "UDDI Business Registry" with descriptions of different types of 227
services, while businesses would populate the registry with descriptions of the services they 228
support. Marketplaces, search engines, and business applications would then query the registry to 229
discover services at each others' companies. Businesses would also use this data to facilitate 230
easier integration with each other over the Web. UDDI may also be employed as a "private" 231
registry (i.e. behind a firewall) that is hosted by an e-marketplace, a standards body, or a 232
consortium of organizations that participate in a given industry. 233

UDDI was moved into the Organization for the Advancement of Structured Information 234
Standards (OASIS) in July 2002. The UDDI Version 2.0 is an OASIS standard, and the Version 235
3.0 specification (now at v3.0.1, referred to here as v3.0) is a Technical Committee-approved 236
specification as of October 2003. 237

3.3.1.2 UDDI Information Model 238

The primary focus of the UDDI information model is business information. The UDDI 239
information model consists of the following four “core” data structures: 240

� businessEntity 241

� businessService 242

� bindingTemplate 243

� tModel 244

These structures, and the relationships between them, are represented in Figure 3: 245

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 12 March 26, 2004

Figure 3: UDDI Information Model 246

The “core structure” in the UDDI information model is a tModel, or “technical model”. A 247
tModel represents a reusable concept, such as a Web Service type, a protocol used by Web 248
Services, or a category system. An example of a tModel would be a WSDL document that 249
describes a particular Web Service. Each distinct specification, transport, protocol, or namespace 250
within a UDDI registry is represented by a tModel; this allows tModels to be used to promote 251
interoperability between software systems. It should be noted that a UDDI registry does not 252
actually store the content that is denoted by a tModel, but rather references its location. 253

The businessEntity data structure describes a business or other organization that typically 254
provides Web Services. It contains descriptive information about the business or provider and 255
the services it offers, such as: 256

� Names and descriptions in multiple languages 257

� Contact information 258

� Classification information 259

The businessService data structure represents a logical grouping of Web Services that a business 260
provides. It should be noted that at this level, there is no technical information provided about 261
these services - rather, this structure allows the ability to assemble a set of services under a 262

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 13 March 26, 2004

common rubric. An example of a businessService would be a set of Purchase Order Web 263
Services (submission, confirmation, and notification) that are provided by a business. 264

The structure that is used to describe the technical information about a Web Service is known as 265
a bindingTemplate. Each bindingTemplate structure represents an individual Web Service, and 266
contains either the access point for a given service, or an indirection mechanism that will lead 267
one to the access point. 268

3.3.1.3 UDDI V3.0 Features 269

The UDDI Version 3.0 specification contains features that render it quite different from the 270
UDDI Version 2.0 specification. Some of these features are: 271

� Multi-Registry Support: Previous versions of UDDI did not permit the publishing of 272
across multiple registries. This capability is now possible with Version 3.0. 273

� Digital Signature Support: Allows UDDI entities to be digitally signed, thereby 274
contributing a higher level of data integrity and authenticity 275

� Policies: Enables various decisions to be enforced by policies, contributing to more 276
consistent handling of contents 277

� Publish/Subscribe: A new Subscription API includes robust support for synchronous or 278
asynchronous notification of registry events to users 279

3.3.2 ebXML Registries 280

3.3.2.1 History and Background 281

The ebXML Registry specification was created as part of the 18-month ebXML initiative that 282
ended in May 2001. Sponsored by the United Nations Centre for Trade Facilitation and 283
Electronic Business (UN/CEFACT) and OASIS, ebXML is a modular suite of specifications that 284
enables enterprises of any size and in any geographical location to conduct business over the 285
Internet. ebXML provides companies with a standard method to exchange business messages, 286
conduct trading relationships, communicate data in common terms, and define and register 287
business processes. An ebXML registry provides a mechanism by which XML artifacts can be 288
stored, maintained, and automatically discovered, thereby increasing efficiency in XML-related 289
development efforts. 290

The OASIS/ebXML Registry Technical Committee was created in May 2001 to build on the 291
ebXML initiative efforts. The ebXML Registry Version 2.0 specification is an OASIS-approved 292
specification, and the ebXML Registry Version 3.0 specification is in the final phases of 293
development. The ebXML Registry specification is actually comprised of two specifications - 294
ebXML Registry Information Model (ebRIM) and ebXML Registry Services (ebRS). We refer to 295
these specifications collectively here as the "ebXML Registry specification". 296

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 14 March 26, 2004

3.3.2.2 ebXML Registry Information Model 297

Unlike UDDI whose primary focus is business information, the main focus of the ebXML 298
Registry information model is more general to encompass XML and non-XML artifacts. 299
Therefore, the ebXML Registry information model is more abstract in nature than that of UDDI. 300

The ebXML Registry information model consists of two “core” data structures, or classes: 301

� RegistryObject 302

� RegistryEntry 303

A RegistryObject provides metadata for a stored RepositoryItem (the term used to refer to that 304
actual object that is stored) – such as name, object type, identifier, description, etc. A 305
RegistryObject can represent many different types of RepositoryItems, from XML schemas, to 306
classification schemes, to Web Service definitions. 307

In contrast, a RegistryEntry is used to represent “catalog-type” metadata about RepositoryItems – 308
that is, metadata about the current state of a RepositoryItem in the registry (e.g. version, status, 309
stability). Consequently, the metadata associated with a RegistryEntry is (in general) more 310
“fluid” than that associated with a RegistryObject. The RegistryEntry class inherits from the 311
RegistryObject class. 312

3.3.2.3 ebXML Registry Within ebXML Technical Architecture 313

The ebXML Registry is a central component of the ebXML Technical Architecture, as it serves 314
as a storage facility and discovery mechanism for the various artifacts that are necessary for 315
engaging in electronic business using the ebXML framework. This is shown in Figure 4: 316

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 15 March 26, 2004

Figure 4: ebXML Technical Architecture 317

In the figure above, an ebXML registry interacts with both a local repository and a remote 318
ebXML registry. Requests are sent to the registry and responses are received from the registry 319
through a Registry Service Interface. The Registry Service Interface may interact with other 320
Registry Service Interfaces, such as UDDI, and open interface standards such as Common Object 321
Request Broker Architecture (CORBA). 322

3.3.3 Enabling Technologies 323

To ensure that service discovery is protected by proper authentication and authorization 324
mechanisms under enterprise security policies, the following standards are also relevant. Please 325
refer to the NCES Security CES Architecture document [SECARCH] for detailed discussions on 326
these standards. 327

� WS-Security, short for Web Services Security, is a standard jointly proposed by an 328
industry consortium (IBM, Microsoft, and Verisign) and currently being ratified by 329
OASIS [WSS]. It serves as the foundation to address SOAP-level security issues, with 330
three major propositions: (1) use of security tokens in SOAP headers for user identity and 331
authentication, (2) use of XML-Signature standard for message integrity and authenticity, 332
and (3) use of XML-Encryption for message confidentiality. There are of course many 333
other security requirements that are not yet addressed by WS-Security. WS-Security is 334
only the first in a series of standards proposed by the consortium aimed at providing a 335

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 16 March 26, 2004

broader security framework for Web Services. Additional standards and vendor 336
proposals are forthcoming that address issues such as authorization, privacy, policy, trust, 337
secure conversation, and federation. 338

� XML-Signature. A formal Recommendation (i.e. approved standard) from W3C 339
[XMLDSIG], this spec covers the syntax and processing of digitally signing selected 340
elements in an XML document using either symmetric (secret) key or asymmetric 341
(public/private) key cryptography. Such digital signatures help ensure the data integrity 342
of the signed XML elements so that any unauthorized data modifications can be detected 343
via signature verification. 344

� XML Access Control Markup Language (XACML). Ratified as an OASIS standard in 345
February 2003 (1.0 version), XACML defines a generic authorization architecture and 346
the constructs for expressing and exchanging access control policy information using 347
XML. Policy constructs include policies, rules, combining algorithms, etc. Like SAML, 348
XACML also provides a request/response semantics for authorization decisions to 349
facilitate access control mechanisms. 350

Table 1 lists the versions of the specifications supported in this architecture document: 351

Table 1: Currently Supported Standards and Their Versions 352

Specification Version
SOAP 1.1
WSDL 1.1
UDDI 2.0, with partial 3.0 features such as subscription
UDDI Tech Note on Taxonomy 2.0, 2001-07-17
UDDI Tech Note on WSDL Mapping 2.0, 2003-11-03
WS-Interoperability Basic Profile 1.0a
XACML 1.1
XML-DSIG W3C Recommendation 2002-02-12

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 17 March 26, 2004

4. ARCHITECTURE OVERVIEW 353

4.1. The Need for Enterprise Service Discovery 354

In a Net-Centric environment, service discovery plays a critical role: 355

� It allows information producers to publish / advertise resource definitions, descriptions, 356
metadata, and accessibility. The information producers may include Web Services (e.g., 357
service-enabled target tracking applications), data repositories (e.g., a Coalition Shared 358
Database), devices (e.g., sensor platforms), or even non-technical business functions 359
(e.g., a helpdesk for technical support). 360

� It allows information consumers to discover, retrieve, and manage service information as 361
advertised by producers. The information consumers may include thick clients (e.g., 362
service-enabled Command and Control applications), thin clients (e.g., web browsers), or 363
devices (e.g. PDAs). 364

� It should allow information developers to transparently enhance discovery, retrieval, and 365
publishing services without interrupting normal business operations. 366

Along with other NCES discovery CESs such as Person Discovery and Content Discovery, 367
Service Discovery is responsible for getting the right information to the right people at the 368
right time in the Net-Centric environment. 369

A service “Yellow Page” is often the analogy used to describe service discovery. This analogy, 370
however, is not sufficient to convey the following important characteristics of Enterprise Service 371
Discovery in a dynamic SOA setting: 372

� Service Discovery makes use of common registries to facilitate information awareness, 373
access, and delivery. Unlike yellow pages that are easily duplicated and distributed to 374
consumers, the registries are logically centralized repositories (though they may be 375
physically replicated to a certain degree), managed by the enterprise. 376

� Unlike yellow pages that are infrequently updated and relatively static, the service 377
registries contain dynamically updated information. 378

� Service Discovery is not merely about service definition and location. It relies heavily on 379
a variety of service metadata. Such metadata plays a crucial role for service visibility 380
and accessibility (more on this later). 381

� Service Discovery is not just for end users browsing and searching services. It is also (if 382
not more) geared towards dynamic, runtime discovery by applications and other system 383
entities. 384

� To support a Net-Centric environment with heterogeneous platforms, products, protocols, 385
and programming languages, it is a given that Service Discovery should be based on 386
open standards to ensure interoperability. 387

� Service Discovery should be properly secured so that sensitive information in the 388
registries is protected and that the publishing and discovery of such information are 389
subject to proper access control. 390

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 18 March 26, 2004

4.2. Summary of Architectural Requirements 391

The primary goal of the service discovery architecture defined in this document is to support 392
dynamic publishing, discovery, and introspection of enterprise services as well as their metadata. 393
The high level requirements generally fall into the following areas of service publishing, service 394
inquiry, service metadata management, and security integration. Many of the requirements are 395
going to be addressed in this version of the architecture, but some are long term goals that will be 396
addressed in the near future. 397

4.2.1 Service Publishing 398

Service publishing involves placing in a registry such discovery entities as service providers, 399
services, service instances, as well as the technical “fingerprints” of the service instance which 400
represent all relevant metadata. The following mechanisms need to be supported: 401

1. Manual service publishing – A human user / operator serves as the publisher, who uses 402
a web user interface to publish the service entities in the registry. This is the most 403
straightforward approach and is likely to be the primary way of publishing services in the 404
near term. 405

2. Automated service publishing – In this case, the publisher is an application (possibly 406
the service itself), which uses a publishing Web Service / API provided by the registry to 407
publish the service entities. The registry can obtain most of the service information by 408
introspection of its WSDL definitions, as described later in this document. 409

3. Dynamic updates to discovery entities – In addition to automated publishing, a service 410
may need to dynamically update its definitions and metadata in the registry, so that the 411
entities in the registry is kept in sync with the operating conditions of the real service. 412
For example, when a service instance is moved to a new end point, or a new 413
authentication requirement is instigated, the service entry in the registry needs to be 414
updated accordingly. 415

4.2.2 Service Inquiry 416

1. Manual, user-oriented service inquiries – Individual users and developers need to be 417
able to browse, search, and inspect services and other entities via a web based user 418
interface. 419

2. Dynamic, runtime service inquiries – Service consumers may also need to discover 420
services at runtime, using an inquiry Web Service interface provided by the registry. 421
Dynamic inquires are crucial to achieve location transparency of services, which allows 422
service consumers to connect to a provider even if the service’s location (or even 423
transport) is changed. 424

3. “Persistent” service inquires – In some cases a service consumer may want to be kept 425
up to date on certain discovery entities published in a registry. A consumer should be 426
able to advertising such a need by subscribing to changes of the interested discovery 427
entities, and get notified of such changes near real time. 428

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 19 March 26, 2004

Regardless of the inquiry mechanisms, the service inquiries should have enough expressive 429
power to support not just name and identifier based queries, but also complex query constraints 430
based on arbitrary metadata. 431

4.2.3 Service Metadata Management 432

As mentioned earlier, Enterprise Service Discovery will heavily leverage metadata about service 433
providers, services, and service instances. For both publishing and inquiries, the following levels 434
of metadata need to be supported: 435

1. “White Page” metadata, which are basic resource definitions such as identifiers, names, 436
locations, and interface definitions. 437

2. “Yellow Page” metadata, which are content related metadata describing what the service 438
provides. Such metadata attributes may include subjects, key words, service types, 439
categories, temporal and spatial constraints, or other “Dublin Core”-like attributes. 440

3. “Brown Page” metadata, which are “semantic” level metadata describing business / 441
functional capabilities provided by the service. Such metadata may refer to well-defined 442
business vocabularies, taxonomies, ontologies, XML schemas, domain data models, or 443
business rules. This kind of metadata is especially important in specialized Communities 444
of Interest (COIs) where community members often need to interact in an ad-hoc fashion 445
but may not necessarily talk the same “business language”. Publishing such metadata 446
helps information providers and consumers understand one another’s capabilities and also 447
enables third-parties to mediate among them as necessary, achieving free information 448
flow that wouldn’t be possible among stove-piped systems. 449

4. “Green Page” metadata, which describes the access capabilities of a service, that is, 450
technological and environment related metadata required for accessing the service. Such 451
metadata may include, but not limited to, security or “Quality of Protection” (QoP) 452
requirements, Quality of Service (QoS) attributes, transport protocol details, and so on. 453
For example, an imagery service may want to advertise that consumers must have T1 and 454
above bandwidth to access the service, or that access to downloading certain imagery 455
files will only be granted during non-business hours. 456

All the above metadata may be expressed in XML. 457

In order to support such metadata requirements, registries must have the following capabilities: 458

1. Management of business and technical vocabularies and taxonomies, via both 459
Graphic User Interfaces and programmatic APIs. UDDI, for instance, provides strong 460
tModel and taxonomy management features that may be used to manage most if not all 461
types of the above metadata. 462

2. Seamless integration with existing XML-based metadata repositories. Service 463
metadata attributes may already exist elsewhere in the system. For instance, there may 464
exist certain Resource Attribute Services, defined in the NCES Security Architecture 465
[SECARCH], which may serve for discovery purposes. Eventually the service registries 466
also need to integrate with other DoD metadata initiatives such as the Defense Discovery 467

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 20 March 26, 2004

Metadata Specification (DDMS) and the DoD XML Repository, so that existing XML 468
schemas and taxonomies may be reused for service discovery purposes. 469

3. Metadata-driven service publishing and inquiry. This is essential because regardless 470
of whether static (design time) or dynamic (runtime) approaches are used, the 471
effectiveness and accuracy of service inquiries will depend largely on the richness of 472
metadata. 473

4. Semantic metadata integration. In the long run, as the number of taxonomies 474
increases, the consistency and interoperability among them may become critical for 475
effective and intelligent service discovery. Semantic Web technologies such as Web 476
Ontology Language (OWL) may be used to build semantic “bridges” among disparate 477
business taxonomies. Future registries may need to support semantic representations of 478
service definitions and metadata. 479

4.2.4 Security Integration 480

Service discovery is closely related to service security, and the relationship goes two ways: On 481
one hand, service publishing and inquiry APIs as well as the registries themselves need to be 482
protected by the enterprise security mechanisms and policies. Conversely, establishing the 483
proper trust relationship between a service consumer and a provider often involves discovery of 484
each other’s security characteristics. The following requirements cover both these aspects: 485

1. Securing the Discovery Service Interfaces – For both publishing and inquiry, the 486
service interfaces need to be protected using the techniques prescribed in the NCES 487
Security Architecture [SECARCH], so that: 488

� Identities of publishers, inquirers, and discovery service providers may be 489
established; 490

� The publishing and inquiry requests and responses are authenticated and their 491
message integrity verified; 492

� The requests and responses are authorized against access control policies, if 493
necessary. 494

2. Trustworthiness of the Discovery Entities – As mentioned earlier, a service registry is 495
the custodian of the discovery entities places within it, and the owner (usually the 496
publisher) who is “advertising” the service is ultimately responsible for the quality, 497
timeliness, and authenticity of these entities. The owner needs to be able to “vouch for” 498
its published entities so that consumers can have some degree of trust on these entities. 499
Digital signatures, for example, may be applied to certain entities to achieve this end. In 500
addition, the registry may wish to maintain consumer feedback and ratings on services, 501
which may be especially helpful in ad-hoc, COI-oriented settings. 502

3. Protection of Sensitive Discovery Entities – When rich sets of service metadata are 503
captured in a service registry, extra care must be taken to make sure sensitive information 504
is not released to unauthorized parties. The registry must integrate with the Security CES 505
Policy Services which manage authorization policies for the enterprise. 506

4. Discovery of the QoP requirements of services – As already outlined in Section 4.2.3. 507

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 21 March 26, 2004

4.2.5 Ubiquitous Service Discovery 508

Service discovery in the Net-Centric environment involves much more than setting up a service 509
registry. For one thing, a centralized service registry cannot sufficiently scale, both functionally 510
and topologically, to support decentralized agencies and user communities with different 511
discovery requirements and different IT infrastructures (more on this later). Furthermore, the 512
loosely coupled nature of NCES requires a ubiquitous, fast, “always-on” kind of discovery 513
capability. The following goals are necessary to support this vision: 514

1. Decentralized Service Registries – Local service discovery activities need not go 515
through WAN connections to a centralized registry. 516

2. Discovery across Multiple Registries – The architectural approaches will be further 517
explored in the next version of this document. 518

3. Discovery Bootstrapping – When a service consumer “plugs in” to a COI network, it 519
first needs to locate the service registry before it’s able to further discover other service 520
providers. In the near term, the consumer may need to be configured a priori with the 521
registry location. In the long term, however, automatic bootstrapping mechanisms (e.g., 522
the multi-cast probe messages proposed by WS-Discovery) may be employed to provide 523
ubiquitous discovery in an ad-hoc network. 524

4.3. Scope, Assumptions, and Limitations 525

The following assumptions and limitations have been identified for the NCES Service Discovery 526
0.4 Release: 527

1. The architecture does NOT mandate or prescribe the data replication mechanisms 528
among the nodes in a registry. A UDDI registry, for example, may choose to use the 529
SOAP-based replication APIs or backend database replication scripts. 530

2. The document does NOT yet cover the federation / affiliation of multiple registries (e.g. 531
registries from different trust domains). 532

3. The document does NOT yet address the integration with other resource registries 533
such as the DoD XML Repository, ebXML registries, or other non-Web Service 534
registries. 535

4. The document does NOT yet support the Defense Discovery Metadata Specification 536
(DDMS). 537

5. The architecture currently does not define registry subscription and notification 538
interfaces. This will be addressed in the next version. 539

6. The architecture currently does not define SOAP-based taxonomy management 540
interfaces. This will be addressed in the next version. 541

7. The architecture does NOT yet address the automatic registry bootstrapping issue. 542
Bootstrapping to a service registry in a trust domain may rely on either a well-known 543
network address for the registry and / or pre-configured registry location(s) in service 544
consumer applications. 545

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 22 March 26, 2004

8. The information model defined in this document does not yet address the versioning of 546
services. Different services versions are currently treated as different services. 547

9. The information model defined in this document does not yet support mapping WSDL 548
operations to UDDI. This will be addressed in later versions. 549

10. This architecture does NOT yet support mapping WSDL extensions (such as WS-550
PolicyAttachment) to UDDI. This will be addressed in later versions. 551

11. This architecture does NOT yet support digitally signed entities by owner. This will be 552
addressed in the near future. 553

12. This architecture does NOT yet support semantic service discovery. 554

4.4. Conceptual Service Discovery Architecture 555

Figure 5 presents a very high level illustration of the service discovery architecture. The diagram 556
reflects the following concepts: 557

1. Service consumers and providers (shown on the left side of the diagram) exchange 558
discovery related information (e.g. service descriptions) with the Service Discovery CES 559
through open industry standards such as WSDL and UDDI, as well as through potential 560
DoD-wide information standards such as DDMS. 561

2. Although the architecture exposes straight UDDI APIs to service publishers and 562
inquirers, other “value-added” discovery services are defined to provide streamlined 563
service publishing, business user-friendly inquiries, and advanced features such as DoD-564
specific taxonomy management. In fact, these services are the RECOMMENDED 565
discovery interfaces over straight UDDI APIs, for reasons outlined in the next subsection. 566
These component interfaces together constitute a platform-independent abstraction layer 567
called Service Discovery CES (shown in the middle section of the diagram). 568

3. The discovery services leverage existing NCES infrastructure (shown on the right side of 569
the diagram) such as metadata repositories and the Security CES through an integration 570
backplane. 571

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 23 March 26, 2004

Figure 5: Conceptual Enterprise Service Discovery Architecture 572

The Service Discovery CES offers the following components: 573

� Service Publishing Service (SPS). This Web Service provides operations for 574
publishing, un-publishing, and updating service related entities in the registry. It serves 575
as a “one-stop shop” for service publishers, bundling processing steps from parsing the 576
WSDL description to creating tModels to categorizing the service with required 577
taxonomies. A sample XML listing for publishing a service is included in Appendix B.2. 578

� Service Inquiry Service (SIS). This service provides simple yet powerful search 579
interfaces for services, using simple XML constructs such as a “serviceLocator”. It 580
shields inquirers from the highly technical UDDI terminology and query semantics (e.g., 581
tModel keys, category bags, bindingTemplates, and so on), and in some cases also 582
optimizes the search by combining what would otherwise be several UDDI calls into a 583
single inquiry. APPENDIX B contains a number of examples of using the Inquiry 584
Service. 585

� Other advanced service interfaces such as those for taxonomy management and 586
bootstrapping will be defined in the future. 587

� A set of user-oriented service discovery portlets are also provided to assist business 588
users or developers who are not familiar with UDDI technology to perform design-time 589

Data Service
Providers

App Service
Providers

Thick
Clients

Thin
Clients

Metadata Repositories

Other COIs

Service
Inquiry
Service

Service
Publishing

Service

St
an

da
rd

-b
as

ed
 R

es
ou

rc
e

In
fo

 E
xc

ha
ng

e
Pl

at
fo

rm
(W

SD
L

/ W
S-

Po
lic

y
/ D

D
M

S
/ …

)

In
te

gr
at

io
n

Ba
ck

pl
an

e

User-Oriented
Discovery
Portlets

Service Discovery CES

UDDI
Registries

UDDI
Registries

UDDI
API Sets

Security CES

Taxonomy
Mgmt

Services

Other Resource
Registries

Bootstrap-
ping

Services

Content
Distribution
Networks

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 24 March 26, 2004

service publishing and inquiry tasks. Figure 6 illustrates a sample service publishing 590
screen shot. 591

Figure 6: Sample Portlet Screen 592

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 25 March 26, 2004

The SPS and SIS will be defined in details in a separate Service Discovery CES Specification 593
document. 594

The discovery architecture provides true loose coupling among applications and enhance overall 595
system stability. As can be seen from Figure 5, this is reflected in the “plug and play” capability 596
for both discovery consumers and discovery infrastructure providers: On the left hand side of 597
the architecture diagram, service providers and consumers can easily plug in to the discovery 598
framework because all interfaces are fully standards based. The right hand side of the diagram 599
illustrates how developers can swap registry implementations without affecting the Web Services 600
and end users. This is made possible because the discovery service interfaces in the middle 601
remain the same. 602

To reiterate, the service interfaces defined by this architecture are specifications, not 603
implementations. The actual implementations may utilize best-of-breed COTS and GOTS 604
technologies and may vary in different IT environments, but the specifications will remain stable 605
and interoperable. Going forward it is envisioned that the specifications will be driven by the 606
collective efforts of various NCES initiatives and their requirements, while at the same time 607
reflecting current industry best practices. 608

4.5. Why Discovery Services? 609

There are many reasons why a service discovery abstraction layer is preferred over using the 610
native UDDI APIs. This subsection attempts to explain some of them from several different 611
perspectives: 612

4.5.1 The Interoperability Perspective 613

Basing the NCES service discovery on the UDDI specification alone may create interoperability 614
problems with other existing or potential discovery standards: 615

� As outlined in Section 3.3, ebXML is also a widely recognized industry standard for 616
discovery; 617

� New standards such as WS-Discovery [WS-DISC] are being proposed and may become 618
relevant to NCES; 619

� For discovery of non-Web Service resources, it may become necessary to integrate / 620
“wrap” other discovery mechanisms such as Java Naming and Directory Interface 621
(JNDI), CORBA Naming Service, JINI, and Peer-to-Peer (P2P) discovery protocols. 622
This cannot be easily achieved with UDDI interfaces. 623

4.5.2 The Usability Perspective 624

To be able to effectively publish and search the UDDI registry, one has to have thorough 625
knowledge on the UDDI information model, which is quite comprehensive yet in some places 626
not very intuitive. Take the tModel concept for example, it is relatively easy to grasp its usage as 627
a “label” for representing a technology “fingerprint”, such as compliance to a certain 628
specification, but its general use as a type system for taxonomies and many other internal UDDI 629
constructs are not very well understood. As a result, service discovery tasks, especially dynamic 630

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 26 March 26, 2004

runtime inquiries, are not always easy to perform from the consumer’s perspective. The 631
following are just a few examples: 632

� Composing UDDI queries in general is not an intuitive task. The use of findQualifiers, 633
categoryBags, keyedReferences, as well as somewhat cryptic tModel keys. See 634
Appendix B.1 for an example; 635

� In some cases, a business inquiry has to be implemented as several sequential UDDI 636
queries, which is tedious and may cause performance concerns. For instance, an inquiry 637
such as “find all SOAP implementations of a particular service spec” would result in at 638
least three UDDI queries, as outlined in a UDDI Technical Committee’s Technical Note 639
on using WSDL in a UDDI registry [UDDI-WSDL, Section 3.3.5]. 640

� In general, the “drill-down” style of UDDI query APIs may be good for design time, 641
interactive UI-based queries, but may not be suitable for runtime queries. For instance, 642
many “find all” type of inquiries may result in N+1 UDDI calls. 643

Similar conclusions may be drawn for publishing interfaces. 644

There are also other technologies that attempts to simplify the UDDI APIs, such as the Java API 645
for XML Registries or JAXR [JAXR], however it is a programming language-specific 646
abstraction layer that cannot be used by other frameworks such Microsoft .NET. 647

4.5.3 The Information Integrity Perspective 648

As mentioned, the UDDI information model is very powerful and flexible enough to support a 649
wide variety of business needs. The specification itself only enforces a minimal number of data 650
elements, leaving most things optional and up to the business to enforce. For the DoD 651
enterprise, it is then imperative to “profile” the usage of the UDDI spec according to DoD and 652
Net-Centricity needs, so that all necessary information is captured and properly formatted to 653
meet quality and interoperability requirements. 654

More specifically, for service publishing, at least the following processing steps are involved: 655

� Creating a businessEntity for the service provider, if it doesn’t exist; 656

� Creating tModels for service portType(s) as well as operations within the portTypes; 657

� Creating tModels for service bindings; 658

� Creating a businessService construct for the service; 659

� Tagging the service with required categorization attributes based on NCES taxonomies 660
(defined in Appendix A.1); 661

� Creating bindingTemplate constructs for service instances; 662

� Tagging bindingTemplates with required technical “fingerprints” (e.g. security policies) 663
based on NCES taxonomies (defined in Appendix A.2); 664

� Creating the necessary access control policies in the Security CES. 665

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 27 March 26, 2004

These steps need to be performed using a series of UDDI calls in the correct order, following the 666
processing rules defined in Section 6. Furthermore, the referential relationships among these 667
data elements need to be established and carefully maintained. 668

The burden of enforcing such data integrity requirements will fall unto the service publishers 669
unless a higher level service can streamline this process. 670

4.5.4 The Security Perspective 671

Currently commercial UDDI products all provide their own proprietary security features, which 672
cannot be seamlessly integrated with the Security CES without significant customization efforts. 673

By contrast, the SPS, SIS, and other discovery CES components can easily integrate with the 674
security CES through, for example, the deployment of security handlers. Integration with the 675
Security CES will be discussed in Section 7. 676

UDDI 3.0 does provide an open security architecture for employing external Policy Decision 677
Points (PDP) and Policy Administration Points (PAP). Until UDDI 3.0 becomes an official 678
standard and widely implemented in vendor products, however, the discovery CES layer remains 679
the only viable approach for providing enterprise security for service registries. 680

4.5.5 The System Architecture Perspective 681

Last but not the least, the need for ubiquitous discovery presence as outlined in Section 4.2.5 682
calls for a light-weight discovery CES layer that has the following advantages: 683

� Replication of UDDI registries is easy to implement but may prove costly, because the 684
physical environment for deploying these enterprise registries has to meet specific 685
requirements on capacity, performance, availability, bandwidth, as well as security. By 686
contrast, the discovery services are applications with small footprints and can be 687
distributed much more easily to many network domains. 688

� The discovery CES may serve as the discovery “proxy” in the local network so that local 689
consumers need not make more costly discovery requests across the network boundary 690
(or even WANs). The discovery CES may also be able to cache inquiry results to 691
improve performance. 692

� When multiple federated registries are involved, the local discovery CES may 693
transparently redirect inquiries to affiliated remote registries. From the consumer’s 694
perspective, it is just a single “virtual” registry. 695

In short, the discovery CES layer is more “agile” and complements enterprise-strength UDDI 696
registries. Together they form a discovery framework that is highly scalable and resilient. 697

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 28 March 26, 2004

This page was intentionally left blank. 698

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 29 March 26, 2004

5. SERVICE DISCOVERY USAGE SCENARIOS 699

A typical usage scenario for Discovery Services is a publish-find-bind cycle. At a high-level, the 700
scenario is described as follows: 701

1. A service provider publishes a service as well as its deployed instances to the Service 702
Discovery CES. 703

2. A service consumer searches through Service Discovery CES and finds the service 704
instance(s) that meet the search criteria. 705

3. The service consumer uses the end point information of a found service instance to “bind 706
to” and consume the service. 707

Figure 7 illustrates the publish-find-bind usage scenario. 708

Figure 7: Typical Service Discovery Cycle 709

5.1. Static Service Discovery 710

Figure 8 describes a common usage scenario that involves developers make service inquiries at 711
design time. 712

service
registry
service
registry

Discovery
Services

Discovery
Services

service consumerservice consumer service providerservice provider

1. publish2. find

3. bind/consume

deployed service instancesEnd-user

service
registry
service
registry

Discovery
Services

Discovery
Services

service consumerservice consumer service providerservice provider

1. publish2. find

3. bind/consume

deployed service instancesEnd-user

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 30 March 26, 2004

Figure 8: Static Service Discovery Scenario 713

This scenario involves the following steps: 714

Step 0. A service provider publishes a Web Service (along with its instance(s)) to the 715
UDDI registry through the Service Publishing Service. This step happens in 716
advance and is therefore dubbed step “0”. 717

Step 1. The developer of an Application Portlet goes to the Service Inquiry Portlet to 718
browse and / or search for the service to be consumed by the application portlet. 719

Step 2. The Service Inquiry Portlet creates a service inquiry and sends it to the Service 720
Inquiry Service, which returns the matching service instance(s). 721

Step 3. The developer, at design time, configures the Application Portlet with the 722
retrieved end point information for the target service instance. The configured 723
portlet is then deployed in the portal. 724

Step 4. After the Application Portlet is up and running, an end user logs on to the portal 725
and starts using the portlet. 726

Service Discovery CESService Discovery CES

1
2

Web Service ProviderWeb Service Provider

5

UDDI
Store

0

NCES SDK

Service
Inquiry

Service

Web
Service

Web
Service

UDDI
API Sets

Service
Publishing

Service

Me
ss

ag
e H

an
dle

rs
(o

ut)

Me
ss

ag
e H

an
dle

rs
(in

)Web PortalWeb Portal

3

NCES SDK

Service
Inquiry
Portlet

App.
Portlet

Me
ss

ag
e H

an
dle

rs
(o

ut)

E
dg

e
U

se
r

Au
th

en
tic

at
io

n

Security CESSecurity CES

Policy
Retrieval

Service
…

4

LEGEND Invocation Path “Out-of-band” Calls Manual Step

User

Developer

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 31 March 26, 2004

Step 5. The portlet, serving as a Web Service consumer, binds to the target service 727
instance and makes a SOAP request on behalf of the user. 728

Note that, in this scenario, the service inquiry occurs at application design time and the 729
discovered service information is static and “hardwired” into the service consumer. 730

5.2. Dynamic Service Discovery 731

In a service-oriented environment, dynamic service discovery can help make system-to-system 732
communications more loosely coupled by eliminating hardwired connections. Figure 9 builds on 733
the previous scenario to illustrate dynamic service discovery. 734

Figure 9: Dynamic Service Discovery Scenario 735

The diagram depicts the following additional steps: 736

Step 5. From the previous scenario, the Application Portlet makes a SOAP request on 737
behalf of the user to the service from Service Provider A. 738

Step 6. The service in Provider A finds it necessary to invoke another Web Service to 739
fulfill the user’s request. The service sends a dynamically constructed search 740
request to the Service Inquiry Service, which returns the matching service 741
instance(s) that meet the search criteria. 742

Service Discovery CESService Discovery CES

7

Service Provider AService Provider A

5

UDDI
Store

NCES SDK

Service
Inquiry

Service

Web
Service

Web
Service

UDDI
API Sets

Service
Publishing

Service

Me
ss

ag
e H

an
dle

rs
(o

ut)

Me
ss

ag
e H

an
dle

rs
(in

)Web PortalWeb Portal

6
NCES SDK

Service
Inquiry
Portlet

App.
Portlet

Me
ss

ag
e H

an
dle

rs
(o

ut)

E
dg

e
U

se
r

Au
th

en
tic

at
io

n

Security CESSecurity CES

Policy
Retrieval

Service
…

LEGEND Invocation Path “Out-of-band” Calls Manual Step

Service Provider BService Provider B

NCES SDK

Web
Service

Web
Service

Me
ss

ag
e H

an
dle

rs
(o

ut)

Me
ss

ag
e H

an
dle

rs
(in

)

User

Developer

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 32 March 26, 2004

Step 7. The service uses the returned end point information from SIS to invoke another 743
service from Service Provider B. 744

Step 7 may be repeated multiple times if the inquiry returns more than one service instances. 745

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 33 March 26, 2004

6. SERVICE DISCOVERY INFORMATION MODEL 746

This section prescribes how discovery information, such as service definitions and metadata, are 747
modeled in the service registry. The goal is to provide a usage “profile” for technology 748
standards that not only suits DoD service discovery needs, but also preserves interoperability 749
across the Net-Centric, heterogeneous environment. The information model defined here is quite 750
minimalistic; it only serves as a starting point for future evolution, driven by the NCES 751
communities. In addition, in this version we focus on the UDDI registry only. 752

6.1. Basic Information Model 753

The notion of Service Providers, Services, and Service Instances are already introduced earlier 754
in the document. Figure 10 depicts the conceptual relationships among those discovery entities 755
as well as the types of metadata with which they are typically associated. 756

Figure 10: Basic Information Model 757

For services, in addition to categorize them with business taxonomies, it is a best practice to 758
declare the functional Service Specification(s) that a service conforms to. A service 759
specification is the interface “contract” for a set of well-defined business operations. For Web 760
Services, a specification is generally written in WSDL format, with the business functionality 761
defined as portTypes. It may also be accompanied by other, more verbose documentation. The 762
specifications are generally implementation-agnostic. 763

Declaring conformance to specifications has important benefits to service discovery, especially 764
to dynamic discovery at runtime. Take federated search for example. A federated search service 765
distributes content search requests to many data services. Because new data services will be 766
added and existing data sources may go offline, the federated search service can only rely on the 767

Service
Provider
Service
Provider

ServiceService ServiceService

Service
Instance
Service
Instance

Service
Instance
Service
Instance

Service
Instance
Service
Instance

Service
Specification
Service

Specification

Business
Taxonomies
Business
Taxonomies

Technical
Fingerprints
Technical
Fingerprints

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 34 March 26, 2004

service registry to discover available data sources dynamically. However, not all data sources 768
have the compatible interfaces for the federated search service to consume their data. By 769
requiring the data services declaring their compliance (or non-compliance) to the Federated 770
Search Specification, the search engine can easily discover the available data sources that are 771
accessible. 772

For service instances, technical “fingerprints” are used to declare the system capabilities and 773
access mechanisms, as outlined in Section 4.2.3. Such technical information is usually specific 774
to a particular deployment of a service, and is thus kept at the instance level. 775

6.2. Modeling Discovery Entities in UDDI 776

This subsection defines the mapping rules for representing the discovery information model in 777
UDDI. Unless specified otherwise, the following discussions are based on the UDDI Version 778
2.03 Data Structure Reference [UDDI-2DS]. The exceptions are some UDDI Version 3.0 779
features [UDDI-3], which are pointed out explicitly. 780

6.2.1 Identifiers and Names 781

In UDDI, the discovery entities are persisted and accessed individually using unique identifiers, 782
or keys. In UDDI 2.0, the keys take the form of a Universally Unique ID (UUID). In addition, 783
the spec mandates that only the UDDI registry can generate keys. Version 3.0 removes this 784
restriction and further allows URI based key formats, but in this document we stick to the 2.0 785
spec for the time being. 786

� RULE_010: Discovery entities MUST be identified using UUIDs generated by the UDDI 787
registry. 788

The human readable names of the discovery entities should comply with the following rules: 789

� RULE_020: Human readable names of discovery entities SHOULD expand 790
abbreviations or acronyms to their full word representations. 791

� RULE_030: Human readable names of discovery entities SHOULD include a 792
parenthesized list of acronyms or aliases for searching. 793

E.g., “Global Directory Service (GDS)”. 794

6.2.2 Service Providers 795

Service providers are represented as a businessEntity in UDDI. Please see [UDDI-2DS] for 796
more details of the data structure. 797

� RULE_110: A service provider MUST be represented in a UDDI registry by a 798
businessEntity data structure. 799

� RULE_120: A service provider SHOULD provide a businessEntity discovery URL with a 800
use type of “homepage”, that points to the provider’s HTTP-accessible web home page. 801

� RULE_130: A businessEntity description MUST be provided. 802

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 35 March 26, 2004

� RULE_140: A businessEntity description SHOULD summarize the main services 803
provided by the service provider. 804

� RULE_150: A service provider MUST provide the primary contact information for an 805
individual that can be contacted for service discovery purposes. A secondary contact 806
SHOULD be provided in case the primary contact is not available. 807

6.2.3 Services 808

A logical service is represented by a businessService structure in UDDI. Each businessService is 809
a logical child of a single businessEntity. Please see [UDDI-2DS] for more details of the data 810
structure. 811

� RULE_210: A service, such as a Web Service, MUST be represented in a UDDI registry 812
by a businessService structure. Only one service can be modeled by an individual 813
businessService. 814

� RULE_220: A businessService description MUST be provided. The description 815
SHOULD include the system entities (e.g. portal user), actions (e.g. get, update, etc.), 816
and objects (e.g. track data) that the service performs. The description SHOULD also 817
include the major databases or systems of record that it accesses. 818

A logical service is represented by zero or more physical service entry points. 819

� RULE_230: The businessService MUST include a bindingTemplate element for each 820
service entry point. 821

The businessService construct contains a CategoryBag element that allows the service to be 822
categorized according to the available taxonomy based classification schemes. APPENDIX A 823
lists a number of required taxonomies for enterprise services. Additional taxonomies need to be 824
defined later through the community process. 825

� RULE_240: The businessService MUST include in its CategoryBag element keyed 826
references to all the required enterprise service taxonomies defined in the Appendix A.1 827
of this document. 828

In particular, a service is recommended to declare the service specification(s) it implements. The 829
specifications are defined using the “nces-mil:discovery:serviceSpecification” 830
taxonomy (see Appendix A.1). 831

� RULE_250: The businessService SHOULD declare the service specification(s) it 832
supports using the “nces-mil:discovery:serviceSpecification” 833
taxonomy. 834

6.2.4 Service Instances 835

In UDDI, a bindingTemplate construct represents a service instance. The most important 836
information contained in a bindingTemplate is the service entry point, which is either the direct 837
protocol access point for the service or an indirection mechanism that leads to the access point. 838
Please see [UDDI-2DS] for details of the bindingTemplate structure. 839

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 36 March 26, 2004

� RULE_310: A Web Service port MUST be represented by a bindingTemplate in a UDDI 840
registry. 841

The accessPoint element is usually a URL to the service instance’s entry point. A companion 842
attribute called URLType is provided to facilitate searching for entry points with a particular 843
protocol. Note that the “protocol” here may not necessarily refer to a network communications 844
protocol. An example might be a Report Ordering service that provides three entry points, one 845
for HTTP, one for email, and one for fax ordering. 846

� RULE_320: A bindingTemplate access point of URLType “http” or “https” MUST 847
resolve to the service instance endpoint. 848

Categorizations may also be applied to bindingTemplates to indicate the technical “fingerprints” 849
of the service instance. This is a UDDI 3.0 feature. In addition to standard UDDI categories 850
such as protocol and transport, the service instance also needs to have the required technical (e.g. 851
security, QoS) categorizations based on the required NCES taxonomies (see Appendix A.2). 852

� RULE_330: The bindingTemplate MUST include in its CategoryBag element keyed 853
references to all the required enterprise service taxonomies defined in the Appendix A.2 854
of this document. 855

6.3. Mapping WSDL Descriptions to UDDI 856

For Web Services, WSDL is used to define the logical operations of a service as well as their 857
“bindings” to a particular transport protocol. The OASIS Technical Note “Using WSDL in a 858
UDDI Registry, Version 2.0” [UDDI-WSDL] describes the recommended approach to mapping 859
WSDL descriptions to the UDDI data structures. 860

� RULE_410: A WSDL document represented in UDDI MUST follow the data mapping 861
rules defined by the OASIS Technical Note “Using WSDL in a UDDI Registry, Version 862
2.0”. 863

Table 2 summarizes the WSDL to UDDI mapping. 864

Table 2: Summary of WSDL to UDDI Mapping 865

WSDL UDDI
PortType tModel (categorized as portType)
Abstract WSDL document OverviewURL of portType tModel
Binding tModel (categorized as binding and wsdlSpec)
Concrete of WSDL document OverviewURL of binding tModel
Protocol from binding extension keyedReference in binding categoryBag
Transport from binding extension (if any) keyedReference in binding categoryBag
Service businessService (categorized as service)
Namespace of Service keyedReference in businessService categoryBag
Port bindingTemplate

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 37 March 26, 2004

7. INTEGRATION WITH SECURITY SERVICES 866

7.1. Securing the Service Interfaces 867

One of the benefits of having the Service Publishing Service and Service Inquiry Service on top 868
of UDDI is to be able to easily leverage the Security CES to provide secure service discovery. 869

Figure 11 illustrates using SOAP message handlers to secure the Inquiry Service. 870

Figure 11: Secure Service Inquiry 871

The Message Authentication Handler verifies the inquiry request signature, the Policy 872
Enforcement Handler authorizes the inquiry based on the service level authorization policies, and 873
the Message Signing Handler signs the inquiry response – all in the same matter as described in 874
the Security CES architecture. In addition, a Service Filtering Handler is used to provide data 875
level access control: Only the service entries that are visible to the consumer are returned, based 876
on the role based policies. 877

7.2. Protecting Discovery Entities 878

Another security aspect is to ensure the integrity and authenticity of the discovery entities 879
published in UDDI. UDDI Version 3.0 specification allows digital signatures to be applied to 880

UDDI
Store

Service Inquiry ServiceService Inquiry Service

M
es

sa
ge

A
ut

he
nt

ic
at

io
n

H
an

dl
er

M
es

sa
ge

A
ut

he
nt

ic
at

io
n

H
an

dl
er

Inquiry
Request

Inquiry
Response

P
ol

ic
y

E
nf

or
ce

m
en

t
H

an
dl

er

P
ol

ic
y

E
nf

or
ce

m
en

t
H

an
dl

er
S

er
vi

ce
Fi

lte
rin

g
H

an
dl

er

S
er

vi
ce

Fi
lte

rin
g

H
an

dl
er

M
es

sa
ge

S
ig

ni
ng

H
an

dl
er

M
es

sa
ge

S
ig

ni
ng

H
an

dl
er

Certificate
Validation

Service

Policy
Decision
Service

Service
Inquiry

Service

Policy
Retrieval

Service

UDDI
API

Sets

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 38 March 26, 2004

just about any UDDI data structure, such as businessService, bindingTemplates, and tModels. 881
Inquirers of a registry can now filter their queries, only requesting data that has in fact been 882
signed. When an inquirer then retrieves and verifies data from a registry, the inquirer can be 883
confident that the data is exactly as the publisher intended it. Similarly, publishers to a registry 884
now have the assurance that they are not being misrepresented by someone claiming to own a 885
UDDI entity. Once publishers have signed data, they can have confidence in the integrity of that 886
data. 887

Due to the lack of vendor implementations, this feature is currently not supported and will be 888
added in the near future. 889

7.3. Discovery of Service QoP Requirements 890

By modeling the Qualify of Protection (QoP) requirements of services using taxonomy-based 891
categorization schemes, these requirements can be just as easily queried as other service 892
metadata. For example, the outbound message handler can check with the service registry to 893
find out whether the target service instance requires message authentication. If not, the message 894
signing step may be skipped to eliminate unnecessary overhead. 895

The required QoP taxonomies are defined in Appendix A.2.2. 896

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 39 March 26, 2004

8. FUTURE WORK 897

The following are identified as items that need to be addressed in future iterations of the 898
architecture: 899

1. Federation / Affiliation of Multiple Registries. 900

As described in Section 4.5.5, a centralized enterprise service registry will not be adequate to 901
satisfy ubiquitous discovery needs and replication can only scale to a limited extent. 902
Multiple affiliated or “federated” registries, each serving a community but formed by the 903
Service Discovery CES into a “virtual” registry, is a topic that will be addressed in the next 904
version of the document. 905

2. Integration with Enterprise Service Management (ESM). 906

UDDI registry may also be used to store service performance metrics. Integration with the 907
ESM CES will be addressed in more details later. 908

3. Native UDDI Integration of NCES Security Policies. 909

As mentioned earlier, UDDI Version 3.0 supports native integration of external security 910
policies, which may bring improved performance compared to the filtering handler approach. 911

4. Mapping Security Policies from WSDL to UDDI. 912

The OASIS Technical Note on mapping WSDL descriptions to UDDI only covers the basic 913
WSDL elements, not WSDL extensions. For automated service publishing, additional rules 914
need to be defined to map WS-PolicyAttachment or other types of extensions to UDDI data 915
structures. 916

5. Support for DDMS. 917

The DDMS schema captures many essential resource metadata attributes such as security 918
classification, title, date, key words, formats, and temporal and spatial constraints. By 919
obtaining a DDMS “descriptor” document for a service at publishing time, the registry can 920
automatically create matching tModels and categories for these attributes, which then 921
becomes discoverable information. This may prove to be a much more effective approach 922
for publishing service metadata, compared to individual users manually typing it in via a web 923
interface. 924

6. Support for ebXML Registries. 925

To be addressed when necessary. 926

7. Further Definition of Enterprise Service Taxonomies. 927

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 40 March 26, 2004

Including both business / functional taxonomies and technical taxonomies. This needs to be 928
driven by the community. 929

8. Capturing Metadata for Information Consumers. 930

So far we have discussed publishing / advertising of metadata for information producers, but 931
metadata for information consumers may also need to be captured, such as consumer needs 932
(i.e., “Wanted Ads”) and capabilities (e.g. device info, bandwidth, push vs. pull modes, etc.). 933

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 41 March 26, 2004

APPENDIX A PREDEFINED TAXONOMIES 934

Taxonomies and identifiers systems play an important role within UDDI. It is through 935
categorization and identification that Service Consumers are able to find services that meet their 936
needs. For a full description of the data structures involved in establishing categorization 937
information, please see [UDDI-2DS]. 938

The taxonomies defined here are currently tentative; they need to be further refined and 939
augmented by the NCES community 940

A.1 Business / Functional Taxonomies 941

Name Description Applies To Checked Current Valid Values

nces-mil:discovery:
serviceSpec

Identifies the
service
specification

Service Yes TBD

nces-mil:discovery:
serviceSpecType

Indicates the
type of the
service
specification

Service Yes

WSDL
Schema
DTD
Text

nces-mil:discovery:
enterpriseServiceType

Indicates the
enterprise
service type

Service Yes

Application Service
Mediation CES
Messaging CES
ESM CES
…

nces-mil:discovery:
COI

Indicates the
Community of
Interest for the
service

Service Yes

C2
Logistics
Intelligence
…

A.2 Technical Taxonomies 942

A.2.1 General 943

Name Description Applies To Checked Current Valid Values

nces-mil:discovery:
deploymentEnvironment

Identifies the
deployment
environment

Service
Instance Yes

Windows
Linux
UNIX
Other

nces-mil:discovery:
enterpriseRelease

The release
number of the
service instance

Service
Instance Yes

R0.3
R0.4
R0.5
...

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 42 March 26, 2004

A.2.2 Security 944

Name Description Applies To Checked Current Valid Values

nces-mil:security:
classification

Indicates the
(system high)
security
classification

Service
Instance Yes Secret

Unclassified

nces-mil:security:
certificationStatus

Indicates the
C&A status of
the deployment

Service
Instance Yes

ATO
ATO Pending
None

nces-mil:security:
authenticationMethod

Indicates the
required
authentication
method

Service
Instance Yes X.509-PKI

None

Other technical taxonomies, such as Quality of Service (QoS), will be defined later. 945

A.3 Defining New Taxonomies 946

New taxonomies MUST following the best practice outlined in the OASIS UDDI Technical 947
Note, “Providing a Taxonomy for Use in UDDI 2.0” [UDDI-TAX]. 948

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 43 March 26, 2004

APPENDIX B MESSAGE EXAMPLES 949

B.1 Simple Inquiry Examples – UDDI API vs. Inquiry Service 950

The following simple examples show how to find a service in a UDDI registry, given the 951
service’s WSDL qualified name (i.e., namespace and local service name). 952

Using UDDI API: 953

<find_service generic=”2.0” xmlns=”urn:uddi-org:api_v2”>954
<categoryBag>955

<keyedReference tModelKey=”uuid:6e090afa-33e5-36eb-81b7-1ca18373f457”956
keyName=”WSDL type”957
keyValue=”service” />958

<keyedReference tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"959
keyName=”service namespace”960
keyValue=”http://example.com/stockquote/” />961

<keyedReference tModelKey="uuid:2ec65201-9109-3919-9bec-c9dbefcaccf6"962
keyName=”service local name”963
keyValue="StockQuoteService" />964

</categoryBag>965
</find_service>966

Using the Inquiry Service provided by Discovery CES: 967

<GetServiceByQName xmlns="urn:nces-mil:discovery:0.4">968
<serviceQName nameSpace="http://example.com/stockquote/">969

StockQuoteService970
</serviceQName>971

</GetServiceByQName>972

The latter is obviously much simpler and user-friendly. 973

B.2 Simple Inquiry Examples – UDDI API vs. Inquiry Service 974

A complex service inquiry example is shown below. The inquiry is for an application service 975
that supports the FederatedSearch service specification, can be accessed by SOAP 1.1, and 976
requires X.509 certificate based authentication. 977

<?xml version="1.0" encoding="UTF-8"?>978
<!--979
This example shows a more complicated inquiry, the result of980
the search will be a list of services, each contains981
service instances that match the following criteria:982
The returned services all have the following attributes:983

1. service type = ApplicationService984
(defined in the taxonomy "nces-mil:discovery:enterpriseServiceType")985

2. service specification = FederatedSearch986
(defined in the taxonomy "nces-mil:discovery:serviceSpec".)987

AND the search will further filter on the service instances,988
only return service instances that meet the following instance properties:989

1. protocol = SOAP 1.1990
(defined as uddi-org:protocol:soap in property taxonomy991

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 44 March 26, 2004

"uddi-org:wsdl:categorization:protocol")992
2. authenticationMethod = X.509-PKI993

(defined in the taxonomy "nces-mil:security:authenticationMethod")994
-->995
<FindServices xmlns="urn:nces-mil:discovery:0.4">996

<serviceLocator>997
<serviceFilter>998

<matchingAttributes>999
<serviceAttribute attributeType="nces-mil:discovery:1000

enterpriseServiceType">1001
<name>service type</name>1002
<value>ApplicationService</value>1003

</serviceAttribute>1004
<serviceAttribute attributeType="nces-mil:discovery:serviceSpec">1005

<name>data type</name>1006
<value>FederatedSearch</value>1007

</serviceAttribute>1008
</matchingAttributes>1009

</serviceFilter>1010
<instanceFilter>1011

<matchingProperties>1012
<instanceProperty propertyType="uddi-1013

org:wsdl:categorization:protocol">1014
<name>protocol</name>1015
<value>uddi-org:protocol:soap</value>1016

</instanceProperty>1017
<instanceProperty propertyType="nces-1018

mil:security:authenticationMethod">1019
<name>authenticationMethod</name>1020
<value>X.509-PKI</value>1021

</instanceProperty>1022
</matchingProperties>1023

</instanceFilter>1024
</serviceLocator>1025

</FindServices>1026

B.3 Service Publishing 1027

This is an example for publishing a service and its instance using the Publishing Service. Please 1028
note the inclusion of required functional and technical categorizations. 1029

<?xml version="1.0" encoding="UTF-8"?>1030
<PublishService xmlns="urn:nces-mil:discovery:0.4">1031

<serviceToPublish publicVisibility="true">1032
<name>MySearchService</name>1033
<qualifiedName nameSpace="http://some.agency.mil/search">1034

MySearchService1035
</qualifiedName>1036
<description>This is a sample SOAP service to show how a service can1037

be published using the Publishing Service.</description>1038
<identifier/>1039
<attributes>1040

<serviceAttribute attributeType="nces-mil:discovery:1041
enterpriseServiceType">1042

<value>ApplicationService</value>1043
</serviceAttribute>1044

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 45 March 26, 2004

<serviceAttribute attributeType="nces-mil:discovery:serviceSpec">1045
<value>FederatedSearch</value>1046

</serviceAttribute>1047
</attributes>1048
<instances>1049

<serviceInstance>1050
<identifier/>1051
<serviceIdentifier/>1052

<accessPoint>1053
http://merceds:7001/search/services/MySearchService1054

</accessPoint>1055
<properties>1056

<instanceProperty>1057
<name>deployer name</name>1058
<value>BAH lab</value>1059

</instanceProperty>1060
<instanceProperty>1061

<name>deployer contact</name>1062
<value>1-800-JohnDoe</value>1063

</instanceProperty>1064
<instanceProperty propertyType="uddi-1065

org:wsdl:categorization:transport">1066
<name>transport</name>1067
<value>uddi-org:protocol:http</value>1068

</instanceProperty>1069
<instanceProperty propertyType="uddi-1070

org:wsdl:categorization:protocol">1071
<name>protocol</name>1072
<value>uddi-org:protocol:soap</value>1073

</instanceProperty>1074
<instanceProperty propertyType="nces-1075

mil:security:authenticationMethod">1076
<name>authenticationMethod</name>1077
<value>X.509-PKI</value>1078

</instanceProperty>1079
<instanceProperty propertyType="nces-1080

mil:esm:QoS:minBandWidthSupported">1081
<name>minBandWidthSupported</name>1082
<value>T1</value>1083

</instanceProperty>1084
</properties>1085

</serviceInstance>1086
</instances>1087

</serviceToPublish>1088
</PublishService>1089

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 46 March 26, 2004

This page was intentionally left blank. 1090

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 47 March 26, 2004

APPENDIX C REFERENCES 1091

[JAXR] Java API for XML Registries (JAXR),
http://java.sun.com/xml/jaxr/index.jsp

[JAXRPC] Java API for XML-Based RPC (JAX-RPC) Specification 1.0
http://java.sun.com/xml/jaxrpc/docs.html

[RFC2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
IETF RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt

[RFC2828] RFC 2828, Internet Security Glossary
http://www.ietf.org/rfc/rfc2828.txt

[SAML] Security Assertion Markup Language
http://www.oasis-open.org/committees/security/#documents

[SECARCH] NCES Security Architecture document, v0.3, prepared by Booz Allen
Hamilton for DISA, March 3, 2004

[SOAP] Simple Object Access Protocol 1.1
http://www.w3.org/TR/SOAP/

[UDDI-2DS] UDDI Version 2.03 Data Structure Reference,
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm

[UDDI-3] UDDI Version 3.0 Specification, http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm

[UDDI-TAX] “Providing a Taxonomy for Use in UDDI Version 2”, http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-taxonomy-
provider-v100-20010717.htm

[UDDI-WSDL] “Using WSDL in a UDDI Registry, Version 2.0”, UDDI Technical
Note, November 3, 2003,
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-
tn-wsdl-v2.htm

[WS-DISC] Web Services Dynamic Discovery (WS-Discovery), Feb. 2004,
http://msdn.microsoft.com/webservices/understanding/specs/default.asp
x?pull=/library/en-us/dnglobspec/html/ws-discovery.asp

[WS-GLOS] Web Service Glossary
http://www.w3.org/TR/ws-gloss/

[WS-I] WS-Interoperability Initiative
http://www.ws-i.org/

[WSS] Web Services Security: SOAP Message Security Spec 1.0 (Community
Draft), http://www.oasis-open.org/apps/org/workgroup/wss/

[XACML] XML Access Control Markup Language (XACML), Version 1.1,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

[XKMS] XML Key Management Specification
http://www.w3.org/TR/xkms

[XMLDSIG] XML Signatures Syntax and Processing
http://www.w3.org/TR/xmldsig-core/

http://java.sun.com/xml/jaxr/index.jsp
http://java.sun.com/xml/jaxrpc/docs.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2828.txt
http://www.oasis-open.org/committees/security/#documents
http://www.w3.org/TR/SOAP/
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-taxonomy-provider-v100-20010717.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-taxonomy-provider-v100-20010717.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-taxonomy-provider-v100-20010717.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx?pull=/library/en-us/dnglobspec/html/ws-discovery.asp
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx?pull=/library/en-us/dnglobspec/html/ws-discovery.asp
http://www.w3.org/TR/ws-gloss/
http://www.ws-i.org/
http://www.oasis-open.org/apps/org/workgroup/wss/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.w3.org/TR/xkms
http://www.w3.org/TR/xmldsig-core/

NCES Service Discovery CES Architecture

NCES_SDCES_Architecture.doc 48 March 26, 2004

[XMLENC] XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

 1092

http://www.w3.org/TR/xmlenc-core/

	EXECUTIVE SUMMARY
	NOTATIONS AND TERMINOLOGY
	Notations
	Terminology

	BACKGROUND
	Service Oriented Architectures
	Net-Centric Enterprise Services
	Overview of Service Discovery Standards
	UDDI Registries
	History and Background
	UDDI Information Model
	UDDI V3.0 Features

	ebXML Registries
	History and Background
	ebXML Registry Information Model
	ebXML Registry Within ebXML Technical Architecture

	Enabling Technologies

	ARCHITECTURE OVERVIEW
	The Need for Enterprise Service Discovery
	Summary of Architectural Requirements
	Service Publishing
	Service Inquiry
	Service Metadata Management
	Security Integration
	Ubiquitous Service Discovery

	Scope, Assumptions, and Limitations
	Conceptual Service Discovery Architecture
	Why Discovery Services?
	The Interoperability Perspective
	The Usability Perspective
	The Information Integrity Perspective
	The Security Perspective
	The System Architecture Perspective

	SERVICE DISCOVERY USAGE SCENARIOS
	Static Service Discovery
	Dynamic Service Discovery

	SERVICE DISCOVERY INFORMATION MODEL
	Basic Information Model
	Modeling Discovery Entities in UDDI
	Identifiers and Names
	Service Providers
	Services
	Service Instances

	Mapping WSDL Descriptions to UDDI

	INTEGRATION WITH SECURITY SERVICES
	Securing the Service Interfaces
	Protecting Discovery Entities
	Discovery of Service QoP Requirements

	FUTURE WORK

